Extensions 1→N→G→Q→1 with N=C22×D7 and Q=S3

Direct product G=N×Q with N=C22×D7 and Q=S3
dρLabelID
C22×S3×D784C2^2xS3xD7336,219

Semidirect products G=N:Q with N=C22×D7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D7)⋊S3 = D7×S4φ: S3/C1S3 ⊆ Out C22×D7286+(C2^2xD7):S3336,212
(C22×D7)⋊2S3 = C2×C21⋊D4φ: S3/C3C2 ⊆ Out C22×D7168(C2^2xD7):2S3336,157
(C22×D7)⋊3S3 = C2×C3⋊D28φ: S3/C3C2 ⊆ Out C22×D7168(C2^2xD7):3S3336,158
(C22×D7)⋊4S3 = D7×C3⋊D4φ: S3/C3C2 ⊆ Out C22×D7844(C2^2xD7):4S3336,161

Non-split extensions G=N.Q with N=C22×D7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D7).S3 = D14⋊Dic3φ: S3/C3C2 ⊆ Out C22×D7168(C2^2xD7).S3336,42
(C22×D7).2S3 = C2×Dic3×D7φ: trivial image168(C2^2xD7).2S3336,151

׿
×
𝔽